
June 1998 The Delphi Magazine 33

Surviving Client/Server:
Object Oriented Databases
by Steve Troxell

Object oriented databases have
been around in one form or

another for about 20 years. Early
products didn’t catch on, partly
because they were difficult to use
in comparison to traditional data-
base management systems, and
largely because object oriented
techniques were not well under-
stood at the time by developers
and data modelers.

Only in the last few years have
ODBMS products seemed to
become serious contenders in the
database market. This is due in
part to a convergence in the matur-
ity of both the products and the
developers who must work with
them. The products are becoming
the robust development platforms
required by development teams,
and the developer community has
become so saturated with object
orientation it no longer takes a
great mental leap to accept the
paradigm.

An Object Oriented What?
What exactly is an object oriented
database? The simplest way to
begin is by anchoring ourselves in
object oriented programming. As
Delphi developers, the basic con-
cepts of OOP should be familiar to
us all. An object represents some
entity within our application, such
as a screen component or an
employee. We define a class
describing the attributes and
behavior of the object. In Delphi
classes, object attributes are
defined as properties and object
behaviors are defined as methods.
For example, an employee class
might have properties for name,
date of hire, salary, and so on. We
might further define employee
methods like transferring to a new
department, receiving a paycheck,
or even being terminated.

Well-defined Delphi classes can
be reused through inheritance. We

would define more general charac-
teristics in base classes and make
descendants from them, adding
more and more specialized func-
tionality for specialized purposes,
without having to recode the char-
acteristics held in common. For
example, we might define a TPerson
class with Name and DateOfHire
properties. We then might make
descendants for TEmployee and
TContractor, each inheriting all the
characteristics of a TPerson and
implementing their own additional
characteristics.

Classes can also implement
custom behavior based on their
datatype. For example, in the TPer-
son class we could add a Salary
method. The TEmployee and TCon-
tractor subclasses could each
implement a completely different
calculation for determining salary.
When we call for the salary of a
TPerson, we get answers calculated
correctly without even knowing if
we are working with a TEmployee or
a TContractor.

We are accustomed to working
with objects, or even collections of
objects, in our Delphi applications.
But as soon as our application
shuts down, the data in these
objects disappears. Object data-
bases grant persistence to the
objects by storing them in a data-
base management system. The
object instances are then sharable
between different programs and
different users. In addition, they
are protected with all the robust
handling of concurrency, transac-
tion processing, and durability
we’ve come to expect from a
DBMS.

Think of it this way: in the struc-
tured programming days before
OOP, persistence could be
achieved by storing records in a
simple random-access disk file.
When relational database systems
came along, they expanded the

persistence of structured pro-
gramming techniques with
multi-user concurrency control,
isolation, transaction processing,
simplified querying and reporting
capability and more.

In essence, object database
systems are to object oriented pro-
gramming what relational data-
base systems were to the simple
random-access file techniques of
structured programming.

ODBMS Versus RDBMS
The next big question is ‘How does
an object oriented database differ
from the relational database model
I’m accustomed to?’ Many of the
basic concepts are the same
between the two. Object databases
define classes to take the place of
relational tables. Classes can con-
tain many instances, which would
be the same as a table’s rows. The
class’s properties are analogous to
a table’s columns. While it helps to
make this comparison in terminol-
ogy, it is important to remember
the structures aren’t exactly the
same.

Object Identifiers (OIDs)
Relational tables are designed
according to set theory. That is,
the physical position of the rows is
meaningless, only the fact that the
data in certain rows fit a certain
search criteria is relevant. The
physical position of the row is not
accessible in any fashion and, in
fact, the physical position of the
row could even change as data is
manipulated in the table. Rows
themselves are looked up based on
searching for specific values in the
actual row data. Relational data-
bases are optimized to perform
these searches very quickly, but
the ability to easily navigate among
rows has been lost.

Object databases assign an
object identifier (OID) to each



34 The Delphi Magazine Issue 34

instance. In database terms, this is
similar to an auto-incrementing
field, a unique identifier automati-
cally generated by the system.
However, its value is not normally
accessible by the program. An
object’s OID is guaranteed to
remain constant throughout the
lifetime of the object. To change
the OID you must destroy the
original object and create a new
one.

Unlike an auto-incrementing
field, the OID is a navigational
anchor that the ODBMS can use to
quickly locate and retrieve the
object instance. In this respect, the
OID is more closely related to a
pointer to a Delphi object. Just like
the Delphi program can quickly
access the Delphi object in
memory using the object pointer,
the ODBMS can quickly access the
database object using the OID.
When relationships are made
between objects, the OIDs are
stored. In a relational model, for-
eign key fields would store values
that identify the related record.
The RDBMS would then use those
values to search the related table
for the matching row. With OIDs,
the related object can be fetched
directly.

Consider a simple invoice
report. An invoice might list an
order number, customer informa-
tion, order date, ship date and a
line for each item ordered, show-
ing the item number and descrip-
tion, quantity, price and extended
price. With a relational database,
invoices are typically implemented
with at least two tables: a header
table containing one row per order
with all the header information
such as order number, customer
and so on, and a detail table

containing one row for each item
ordered. The order number would
be stored in each detail row, and
we would fetch them by searching
for rows containing a matching
order number.

In a Delphi application, a TIn-
voice object would contain proper-
ties for all the header information,
and might contain an Items prop-
erty which was nothing more than
a collection of pointers to TIn-
voiceItem objects describing each
item in the invoice. The invoice is
represented in the program by a
single instance of TInvoice. Our
TInvoice object is said to be a ‘co-
mposite object’ because it con-
tains other object instances,
namely all the TInvoiceItems for a
given order. These objects are not
physically contained in TInvoice.
Rather, TInvoice holds references
to them in the form of object point-
ers and they are normally accessed
via the TInvoice class.

In an object database, we would
have Invoice and InvoiceItem
classes, storing information in
much the same way as our rela-
tional tables. However, each
Invoice object would link to
InvoiceItem by storing within itself
a list of the OIDs from InvoiceItem.
When we retrieve an invoice, the
line items are accessed more
quickly because we have direct
links to them, rather than having to
search for objects in InvoiceItem
with a matching order number.

The concept of the OID is a sig-
nificant factor in how object ori-
ented databases can outperform
relational databases in certain
cases. The object relationships are
explicitly recorded as lists of OIDs
independent of the data in the
object. In relational databases,

relationships are based on values
in the data itself and must be
looked up each time. As relation-
ships become more complex,
requiring more joined tables, you
can begin to see how advantageous
direct association via the OID can
be.

Object databases can signifi-
cantly out-perform their relational
cousins when complex data is
involved. Calculations or proc-
esses involving a number of joined
tables can be real performance kill-
ers in a relational database. But an
object database, with its direct
relationships via the OID, can com-
bine these results much more
quickly.

Inheritance
Another major element of object-
orientation is inheritance. We can
extend the capabilities of a class by
subclassing it, inheriting all the
base class characteristics, and
adding our own.

Suppose we are designing a
system to manage the inventory
for a computer retail store. We’ll
need to keep track of each item in
stock: monitors, CPUs, printers,
keyboards and so on. Obviously
each item will have some shared
characteristics such as an inven-
tory number, price, manufacturer,
and shipping weight. Some items
have unique characteristics:
monitors have a screen size and
resolution, CPUs have a clock
speed, and hard disks have a stor-
age capacity.

To organize this data in a
relational database, we have three
general choices: all-in-one, inde-
pendent entities, or master-detail.

InventNum Category Price Description ScreenSize ClockSpeed Capacity

10001 MON 399.99 Sony SVGA 15 (null) (null)

10021 HDD 299.99 Maxtor (null) (null) 4400

10075 CPU 145.00 Intel Pent II (null) 200 (null)

10080 MON 599.95 Gateway SVGA 17 (null) (null)

10211 CPU 115.00 AMD K6 (null) 200 (null)

10301 HDD 199.99 Maxtor (null) (null) 3686

10313 HDD 1199.99 Seagate (null) (null) 9216

➤ Figure 1: Items



June 1998 The Delphi Magazine 35

The all-in-one approach means
that we create a single huge table
for all items, with columns for all
possible attributes of any possible
item we wish to store. Most likely
one column will be a code defining
the category of the item. In Figure
1, the Category column tells us

what kind of piece we are looking
at: MON for monitors, CPU for CPUs,
HDD for hard drives, etc.

I also call this the ‘beat it with a
hammer until it fits’ approach.
While this strategy does give us
ready access to any item in our
inventory, it also requires that
doing pretty much anything with
that item requires special coding

to examine the Category column
and pull the applicable information
from the rest of the columns. How
would you write a query to give you
a full report of all current items in
the inventory? It is also very waste-
ful of storage space because just
about every row will have columns
that are not applicable to that item.

The independent entities app-
roach calls for a separate table for
each item category with similar
information. It also means the
shared information is repeated in
each table. Figure 2 shows how we
would lay out these tables.

This is a much more efficient
storage plan, but does mean we
have to examine one of several dif-
ferent tables to get details for any
given inventory item. The concept
of the ‘category’ code is still there;
it’s just externalized from the data.
Our program will have to deter-
mine the category of a given item in
order to decide which inventory
table to use to look up its specifics.
Also, querying the database for
information on all items is still a
cumbersome prospect.

Monitors

InventNum Price Description ScreenSize

10001 399.99 Sony SVGA 15

10080 599.95 Gateway SVGA 17

CPUs

InventNum Price Description ClockSpeed

10075 145.00 Intel Pent II 200

10211 115.00 AMD K6 200

HardDrives

InventNum Price Description Capacity

10021 299.99 Maxtor 4400

10301 199.99 Maxtor 3686

10313 1199.99 Seagate 9216

➤ Figure 2



36 The Delphi Magazine Issue 34

➤ Figure 3

The third approach, master-
detail, combines the previous two
techniques. We have a single table,
containing all the shared columns
and a category code and one row
for every inventory item. We also
have the independent entity tables
as shown in Figure 2, but without
the shared columns. The concept
is illustrated in Figure 3. The Items
table serves as a master control of
all inventory items, with all the
common information. The cate-
gory code refers us to the associ-
ated detail table containing the
specifics for that particular piece.

As with the other approaches,
we still need a code value to tell us
what type of inventory item we are
looking at in order to know where
to find the specific information for
that item. It is still awkward for us
to efficiently connect the data from
the various tables regardless of its
type.

This is where object oriented
databases shine. To solve this
problem, we define a base class

called Items, which contains the
shared information. Then we sub-
class each of the item categories
into new classes: Monitors, CPUs
and HardDrives. Because of sub-
classing, each of these new classes
also have the shared data between
them, but no data is stored
redundantly (see Figure 4).

When we create an object, it is
reflected in all levels up the hierar-
chy. Therefore, when we create a
Monitors object, we appear to get a
new row in Monitors and a new row
in Items.

In reality, there is only one
object instance in the database,
reflected in all ancestor classes as
well. Because of this we have multi-
ple access paths into our data.
When we want to examine all
inventory items, we can scan the
Items class. When we want to
examine all the hard drives, we can
scan the HardDrives class. If we
make a change to the price of a
hard drive in the HardDrives class,
the change is automatically

Items

InventNum Category Price Description

10001 MON 399.99 Sony SVGA

10021 HDD 299.99 Maxtor HDD

10075 CPU 145.00 Intel Pent II

10080 MON 599.95 Gateway SVGA

10211 CPU 115.00 AMD K6

10301 HDD 199.99 Maxtor HDD

10313 HDD 1199.99 Seagate HDD

Monitors

InventNum ScreenSize

10001 15

10080 17

CPUs

InventNum ClockSpeed

10075 200

10211 200

HardDrives

InventNum Capacity

10021 4400

10301 3686

10313 9216

Items

InventNum Price Description

10001 399.99 Sony SVGA

10021 299.99 Maxtor HDD

10075 145.00 Intel Pent II

10080 599.95 Gateway SVGA

10211 115.00 AMD K6

10301 199.99 Maxtor HDD

10313 1199.99 Seagate HDD

Monitors

InventNum Price Description ScreenSize

10001 399.99 Sony SVGA 15

10080 599.95 Gateway SVGA 17

CPUs

InventNum Price Description ClockSpeed

10075 145.00 Intel Pent II 200

10211 115.00 AMD K6 200

HardDrives

InventNum Price Description Capacity

10021 299.99 Maxtor 4400

10301 199.99 Maxtor 3686

10313 1199.99 Seagate 9216

➤ Figure 4



June 1998 The Delphi Magazine 37

reflected in the corresponding
entry in Items. This is no surprise
since, as we said, there is only one
instance of the object in the
database.

You could emulate this scheme
by starting with the relational table
shown in Figure 1 and defining
views with restricted rows and col-
umns for each of the subsets
shown in Figure 2. But you would
still have wasted storage space and
a clumsy schema definition.

Even in the object database,
when looking at any particular
item, we need something to tell us
what category it’s in. The concept
of a category code is still there, but
now it is inherent to the class itself.
When we have an object created in
the Monitors class, we already
know we are dealing with a moni-
tor, even if we are accessing it from
the Items class.

Methods
In Delphi, we can associate pro-
gram code with a class in the form
of a method. Most object data-
bases will store executable code in

a similar manner. Implementations
vary widely, but in general a
method can be written in SQL or a
high-level language like C++ and
stored in the object database.
Client applications can fetch the
code to execute on the worksta-
tion, or it might even execute on
the server itself.

The usefulness of object meth-
ods should be apparent from our
travels in OOP. But method storage
is one of the least developed areas
of object database products, and
storage and retrieval of executable
code may not be as streamlined as
you would like. Too much depends
on the specific ODBMS product
you are using to comment much
further on the topic this month.
Next month, we’ll be looking at a
particular ODBMS and will go into
more detail about its handling of
methods.

Next Month...
In the next instalment we will
continue our investigation of
object oriented databases by
taking a detailed look at Computer

Associates’ new Jasmine ODBMS.
We’ll see just how we can exploit
this platform with Delphi.

Steve Troxell is a software engi-
neer with Ultimate Software
Group in the USA. You can contact
him by email at Steve_Troxell@
USGroup.com


	An Object Oriented What?
	ODBMS Versus RDBMS
	Object Identifiers (OIDs)
	Inheritance
	Methods
	Next Month...

